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1 Solve the inequality�3x − 1� < �2x + 5�. [4]

2 A curve is defined for 0< 1 < 1
20 by the parametric equations

x = tan1, y = 2 cos21 sin1.

Show that
dy
dx

= 6 cos51 − 4 cos31. [5]

3 The polynomial 4x3 + ax2 + bx − 2, wherea andb are constants, is denoted by p�x�. It is given that
�x + 1� and�x + 2� are factors of p�x�.

(i) Find the values ofa andb. [4]

(ii) Whena andb have these values, find the remainder when p�x� is divided by�x2 + 1�. [3]

4 (i) Show that cos�1 − 60Å� + cos�1 + 60Å� � cos1. [3]

(ii) Given that
cos�2x − 60Å� + cos�2x + 60Å�
cos�x − 60Å� + cos�x + 60Å� = 3, find the exact value of cosx. [4]

5 The complex numbersw andÏ are defined byw = 5+ 3i andÏ = 4+ i.

(i) Express
iwÏ in the formx + iy, showing all your working and giving the exact values ofx andy.

[3]

(ii) FindwÏ and hence, by considering arguments, show that

tan−1�3
5

� + tan−1�1
4

� = 1
40. �4�

6 It is given thatI = Ó 0.3

0

�
1+ 3x2�−2

dx.

(i) Use the trapezium rule with 3 intervals to find an approximation toI, giving the answer correct
to 3 decimal places. [3]

(ii) For small values ofx,
�
1+ 3x2�−2 ≈ 1 + ax2 + bx4. Find the values of the constantsa andb.

Hence, by evaluatingÓ 0.3

0
�1+ ax2 + bx4�dx, find a second approximation toI, giving the answer

correct to 3 decimal places. [5]
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7 The equations of two straight lines are

r = i + 4j − 2k + ,�i + 3k� and r = ai + 2j − 2k + -�i + 2j + 3ak�,

wherea is a constant.

(i) Show that the lines intersect for all values ofa. [4]

(ii) Given that the point of intersection is at a distance of 9 units from the origin, find the possible
values ofa. [4]

8 The variablesx andy are related by the differential equation

dy
dx

= 1
5xy

1
2 sin

�1
3x
�
.

(i) Find the general solution, givingy in terms ofx. [6]

(ii) Given thaty = 100 whenx = 0, find the value ofy whenx = 25. [3]

9 (i) Sketch the curvey = ln�x + 1� and hence, by sketching a second curve, show that the equation

x3 + ln�x + 1� = 40

has exactly one real root. State the equation of the second curve. [3]

(ii) Verify by calculation that the root lies between 3 and 4. [2]

(iii) Use the iterative formula

xn+1 = 3
��

40− ln�xn + 1�
�
,

with a suitable starting value, to find the root correct to 3 decimal places. Give the result of each
iteration to 5 decimal places. [3]

(iv) Deduce the root of the equation

�ey − 1�3 + y = 40,

giving the answer correct to 2 decimal places. [2]

10 By first using the substitutionu = ex, show that

Ô ln 4

0

e2x

e2x + 3ex + 2
dx = ln

�8
5

�
. �10�
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